TANAKA LAB. Physics of Soft Condensed Matter The University of Tokyo Graduate School of Engineering Department of Applied Physics The University of Tokyo Institute of Industrial Science Department of Fundamental Engineering
Entrance > Research > Polymer, Liquid Crystal, Colloid, Membrane, Protein > Membrane System > Self-Organization in Phase Separation of a Lyotropic Liquid Crystal
Polymer, Liquid Crystal, Colloid, Membrane, ProteinLiquid, Glass, GelLight and Soft Matter
Phase Separation in a Normal Fluid MixtureViscoelastic Phase SeparationPhase Separation of Colloidal SuspensionsNumerical Simulations of Viscoelastic Phase SeparationMicro-Phase Separation in Diblock CopolymerInterplay between Wetting and Phase SeparationPhase Separation under External FieldsDynamic Control of the Smectic MembranesCritical Phenomena in Polymer SolutionsCoil-Globule Transition of a Single PolymerColloidal ‘Atom’Colloidal Gel NetworkElectrophoretic Separation of Charged ParticlesAggregation of Charged Colloidal SystemsSurface-Assisted Monodomain Formation of a Lyotropic Liquid CrystalShear-Induced Topological Transitions in a Membrane SystemSpontaneous Onion-Structure FormationSelf-Organization in Phase Separation of a Lyotropic Liquid CrystalTransparent Nematic Phase in a Liquid-Crystal-Based MicroemulsionColloidal Aggregation in a Nematic Liquid CrystalPhase Separation of a Mixture of an Isotropic Liquid and a Liquid CrystalSpontaneous Partitioning of Particles in a Membrane System

Self-Organization in Phase Separation of a Lyotropic Liquid Crystal

Self-Organization in Phase Separation of a Lyotropic Liquid Crystal Phase separation is one of the most fundamental physical phenomena that controls the morphology of heterogeneous structures. Phase separation of a binary mixture of simple liquids produces only two morphologies: a bicontinuous or a droplet structure in the case of a symmetric or an asymmetric composition, respectively. For complex fluids, there is a possibility to produce other interesting morphologies. We found that a network structure of the minority phase can also be induced transiently on phase separation if the dynamics of the minority phase are much slower than those of the majority phase. Here we induce a cellular structure of the minority phase intentionally with the help of its smectic ordering, using phase separation of a lyotropic liquid crystal into the isotropic and smectic phase. We can control the three morphologies, cellular, network and droplet structures, solely by changing the heating rate. We demonstrate that the kinetic interplay between phase separation and smectic ordering is a key to the morphological selection. This may provide a new route to the formation of network and cellular morphologies in soft materials.

« BACK NEXT »