TANAKA LAB. Physics of Soft Condensed Matter The University of Tokyo Graduate School of Engineering Department of Applied Physics The University of Tokyo Institute of Industrial Science Department of Fundamental Engineering
Entrance > Research > Polymer, Liquid Crystal, Colloid, Membrane, Protein > Membrane System
Polymer, Liquid Crystal, Colloid, Membrane, ProteinLiquid, Glass, GelLight and Soft Matter
Phase Separation in a Normal Fluid MixtureViscoelastic Phase SeparationPhase Separation of Colloidal SuspensionsNumerical Simulations of Viscoelastic Phase SeparationMicro-Phase Separation in Diblock CopolymerInterplay between Wetting and Phase SeparationPhase Separation under External FieldsDynamic Control of the Smectic MembranesCritical Phenomena in Polymer SolutionsCoil-Globule Transition of a Single PolymerColloidal ‘Atom’Colloidal Gel NetworkElectrophoretic Separation of Charged ParticlesAggregation of Charged Colloidal SystemsSurface-Assisted Monodomain Formation of a Lyotropic Liquid CrystalShear-Induced Topological Transitions in a Membrane SystemSpontaneous Onion-Structure FormationSelf-Organization in Phase Separation of a Lyotropic Liquid CrystalTransparent Nematic Phase in a Liquid-Crystal-Based MicroemulsionColloidal Aggregation in a Nematic Liquid CrystalPhase Separation of a Mixture of an Isotropic Liquid and a Liquid CrystalSpontaneous Partitioning of Particles in a Membrane System

Membrane System

Surface-Assisted Monodomain Formation of a Lyotropic Liquid Crystal

Surface-Assisted Monodomain Formation of a Lyotropic Liquid Crystal

Shear-Induced Topological Transitions in a Membrane System

Shear-Induced Topological Transitions in a Membrane System

Spontaneous Onion-Structure Formation

Spontaneous Onion-Structure Formation

Self-Organization in Phase Separation of a Lyotropic Liquid Crystal

Self-Organization in Phase Separation of a Lyotropic Liquid Crystal