TANAKA LAB. Physics of Soft Condensed Matter The University of Tokyo Graduate School of Engineering Department of Applied Physics The University of Tokyo Institute of Industrial Science Department of Fundamental Engineering
Entrance > Research > Liquid, Glass, Gel > Liquid-Liquid Transition > Critical-Like Phenomena Associated with Liquid-Liquid Transition
Polymer, Liquid Crystal, Colloid, Membrane, ProteinLiquid, Glass, GelLight and Soft Matter
Liquid-Liquid Transition in the Molecular LiquidCritical-Like Phenomena Associated with Liquid-Liquid TransitionLiquid-Liquid Transition under Spatial ConfinementSimple View of Waterlike AnomaliesTwo-Order-Parameter Description of Critical Phenomena and Phase Separation of Supercooled LiquidsTwo-Order-Parameter Description of Glass Transition Covering Its Strong to Fragile LimitFrustration on the Way to Crystallization in GlassGlass Transition in a Polydispersed Colloidal SystemGlass Transition and Jamming in a Driven Granular SystemAging and Shear Rejuvenation of a Colloidal GlassKinetics of Crystallization under a Glass Transition TemperatureViolation of the Incompressibility of Liquid by Simple Shear Flow

Critical-Like Phenomena Associated with Liquid-Liquid Transition

Critical-Like Phenomena Associated with Liquid-Liquid Transition Contrary to the conventional wisdom that there is only one unique liquid state for any material, recent evidence suggests that there can be more than two liquid states even for a single-component substance. The transition between these liquid states is called a liquid-liquid phase transition. We report the detailed experimental investigation on the kinetics of the continuous spinodal-decomposition-type transformation of one liquid into another for triphenyl phosphite. From the analysis of the linear regime, we found that the correlation length, of fluctuations of the relevant order parameter diverges while approaching the spinodal temperature. This is an indication of a critical-like anomaly associated with the liquid-liquid transition. We also revealed that the order parameter governing the liquid-liquid transition must be of a nonconserved nature.