TANAKA LAB. Physics of Soft Condensed Matter The University of Tokyo Graduate School of Engineering Department of Applied Physics The University of Tokyo Institute of Industrial Science Department of Fundamental Engineering
Entrance > Research > Polymer, Liquid Crystal, Colloid, Membrane, Protein > Complex System of Soft Matters > Phase Separation of a Mixture of an Isotropic Liquid and a Liquid Crystal
Polymer, Liquid Crystal, Colloid, Membrane, ProteinLiquid, Glass, GelLight and Soft Matter
Phase Separation in a Normal Fluid MixtureViscoelastic Phase SeparationPhase Separation of Colloidal SuspensionsNumerical Simulations of Viscoelastic Phase SeparationMicro-Phase Separation in Diblock CopolymerInterplay between Wetting and Phase SeparationPhase Separation under External FieldsDynamic Control of the Smectic MembranesCritical Phenomena in Polymer SolutionsCoil-Globule Transition of a Single PolymerColloidal ‘Atom’Colloidal Gel NetworkElectrophoretic Separation of Charged ParticlesAggregation of Charged Colloidal SystemsSurface-Assisted Monodomain Formation of a Lyotropic Liquid CrystalShear-Induced Topological Transitions in a Membrane SystemSpontaneous Onion-Structure FormationSelf-Organization in Phase Separation of a Lyotropic Liquid CrystalTransparent Nematic Phase in a Liquid-Crystal-Based MicroemulsionColloidal Aggregation in a Nematic Liquid CrystalPhase Separation of a Mixture of an Isotropic Liquid and a Liquid CrystalSpontaneous Partitioning of Particles in a Membrane System

Phase Separation of a Mixture of an Isotropic Liquid and a Liquid Crystal

Phase Separation of a Mixture of an Isotropic Liquid and a Liquid Crystal We numerically study phase-separation dynamics of symmetric mixtures of an isotropic liquid and a liquid crystal, incorporating nematohydrodynamics, for the first time. We find that the hydrodynamics not only accelerates the domain growth, but also leads to the breakdown of the morphological symmetry of the two phases, which occupy the same volume: The liquid-crystal-rich phase tends to form isolated domains. This symmetry breaking is revealed to be induced by the flow-alignment coupling due to the anisotropic shape of liquid crystal molecules (kinetic effects), and not by the elastic asymmetry (energetic effects).

« BACK NEXT »